Shandong Fengtu IOT Technology Co., Ltd
Sales Manager:Ms. Emily Wang
Cel,Whatsapp,Wechat:+86 15898932201
Email:info@fengtutec.com
Add:No. 155 Optoelectronic Industry Accelerator, Gaoxin District, Weifang, Shandong, China
Sales Manager:Ms. Emily Wang
Cel,Whatsapp,Wechat:+86 15898932201
Email:info@fengtutec.com
Add:No. 155 Optoelectronic Industry Accelerator, Gaoxin District, Weifang, Shandong, China
time:2025-03-07 09:26:53 source:Weather Station viewed:247 time
In the era of rapid technological development today, GNSS high - precision positioning technology has become an essential key support in many fields. It can achieve millimeter - level accuracy. What is the technical principle behind this?
GNSS monitoring stations include the US GPS, China's BeiDou, Russia's GLONASS, etc. The equipment receives signals from multiple navigation satellites through antennas. These signals carry key information such as time and orbital parameters, laying a data foundation for high - precision positioning. Among this information, the carrier - phase differential technique plays a core role. The reference station and the rover station simultaneously receive satellite carrier signals and use the carrier - phase differences to improve accuracy. Since the carrier wavelength is short, accurate calculation of the phase difference can achieve centimeter - level or even millimeter - level positioning. After the reference station calculates the error with the rover station, it transmits the differential data to the rover station, and the rover station corrects the positioning result in real - time.
In addition to the differential technique, high - precision positioning algorithms are also an important part. Real - Time Kinematic (RTK) technology improves accuracy by calculating the relative position differences between the reference station and the rover station; Precise Point Positioning (PPP) relies on accurate modeling and estimation of satellite orbit, clock error and other parameters to achieve high - precision positioning of a single receiver. Moreover, the GNSS receiver transmits the positioning data to the data processing unit for real - time processing and analysis. By comparing the position data at different time points, the displacement and other values are accurately calculated, further improving the accuracy.
In the field of geological disaster monitoring, GNSS monitoring stations can monitor the occurrence and development of disasters such as landslides, ground collapses, and slope displacements in real - time, issue early warnings and take corresponding preventive and disaster - reduction measures. This provides a strong basis for disaster warning and prevention, safeguarding our lives and property.
Moisture describes the level of moisture in the soil, which reflects the actual water content in the soil and is critical to plant growth. There are three key indicators of soil moisture: the maximum saturated water content of the soil, which is the degree to which the soil can become completely sat...
In port and traffic-intensive areas, severe weather conditions such as fog and strong winds often have a serious impact on production and transport activities. Owing to the challenges of establishing meteorological observation facilities in these areas, there is a chronic lack of systematic observat...
The working principle of high frequency radar level meter:FM continuous wave radar level meter general principle is the radar to the top of the tank radiation electromagnetic waves, electromagnetic waves encountered in the medium when the reflection by the radar to receive, send and receive signals...
Crops cannot grow without the nourishment of the soil, so while exploring weather changes, it is equally crucial to have a good grasp of soil conditions. In order to achieve high quality and high yield of crops, planting must be arranged according to the characteristics and conditions of the land. S...